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ABSTRACT

Convection-permitting ensembles can capture the large spatial variability and quantify the inherent un-

certainty of precipitation in areas of complex terrain; however, such systems remain largely untested over the

western United States. In this study, we assess the capabilities of deterministic and probabilistic cool-season

quantitative precipitation forecasts (QPFs) produced by the 10-member, convection-permitting (3-km hor-

izontal grid spacing) NCAR Ensemble using observations collected by SNOTEL stations at mountain lo-

cations across the western United States and precipitation analyses from PRISM. We also examine the

performance of operational forecast systems run by NCEP including the High Resolution Rapid Refresh

(HRRR) model, the NAM forecast system with a 3-km continental United States (CONUS) nest, GFS, and

the Short-Range Ensemble Forecast system (SREF). Overall, we find that higher-resolution models, such as

the HRRR, NAM-3km CONUS nest, and an individual member of the NCAR Ensemble, are more de-

terministically skillful than coarser models, especially over the narrow interior ranges of the western United

States, likely because they better resolve topography and thus better simulate orographic precipitation. The

10-member NCAREnsemble is also more probabilistically skillful than 13-member subensembles composed

of each SREF dynamical core, but less probabilistically skillful than the full 26-member SREF, as a result of

insufficient spread. These results should help guide future short-range model development and inform

forecasters about the capabilities and limitations of several widely used deterministic and probabilistic

modeling systems over the western United States.

1. Introduction

Recent increases in computational capabilities have

allowed for the development of ensemble numerical

weather prediction (NWP) modeling systems with hori-

zontal grid spacings # 4km, such that cumulus parame-

terizations can be omitted (Kain et al. 2008). Commonly

referred to as ‘‘convection permitting’’ ensembles (CPEs),

these modeling systems offer significant promise for im-

proving quantitative precipitation forecasts (QPFs) and

probabilistic QPFs (PQPFs) over the western United

States. At present, deterministic convection-permitting

models (CPMs) run operationally by theNational Centers

for Environmental Prediction (NCEP), such as the High

Resolution Rapid Refresh (HRRR) and North American

Mesoscale Forecast System 3-km continental United

States (CONUS) nest (hereafter NAM-3km), provide

high-resolution numerical guidance but no information

concerning forecast uncertainty, except in a time-lagged

sense (i.e., ensembles composed of successivemodel runs).

In contrast, the Short-Range Ensemble Forecast system

(SREF; horizontal grid spacing ;16km) and Global En-

semble Forecast System (GEFS; effective horizontal grid

spacing ;33km) provide information on forecast un-

certainty but fail to adequately resolve many key topo-

graphic features of the western United States. As a result,

meteorologists employ a variety of techniques to generate

QPFs and PQPFs over the western United States using

deterministic CPMs (Alexander et al. 2014; Rogers et al.

2017), ad hoc ensembles composed of a collection of CPM

forecasts (Alexander et al. 2011; Jirak et al. 2012, 2016),
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coarse-resolution ensembles, and statistical downscaling

approaches (Novak et al. 2014; Lewis et al. 2017).

The promise of CPEs over the western United States

reflects their ability to both resolve finescale pre-

cipitation processes, including orographic effects, and

estimate forecast uncertainty. The former reflects the

ability of CPMs to produce precipitation forecasts with

better-defined, more realistic precipitation structures

than convection-parameterizing models (Mass et al.

2002; Roberts and Lean 2008; Weisman et al. 2008;

Schwartz et al. 2009; Clark et al. 2016). For example,

Roberts and Lean (2008) showed that forecasts of con-

vective precipitation produced by the Met Office Uni-

fied Model (MetUM) over the United Kingdom at 1-km

horizontal grid spacing without parameterized convec-

tion resulted in increased realism and skill compared to

forecasts at 12-km grid spacing with parameterized

convection. Similarly, Schwartz et al. (2009) found that

QPFs of convection over the central United States

produced by the Weather Research and Forecasting

(WRF) Model at 2-km horizontal grid spacing were

more detailed than those produced by the WRF at 4-km

grid spacing and superior to those generated by the

operational 12-km NAM. In mountainous terrain, sev-

eral studies have demonstrated that decreasing hori-

zontal grid spacing to below 4km improves simulations

of orographic precipitation (Colle et al. 2005; Garvert

et al. 2005; Schwartz 2014).

Ensembles produce estimates of forecast uncertainty

by executing multiple model runs, each with varied ini-

tial conditions and/or model configurations. Because of

their high resolution, CPEs can assess the inherent un-

certainties at convective scales, which lead to rapid error

growth (Lorenz 1969), and the sensitivity of orographic

precipitation to characteristics of the incident flow

(Colle 2004; Roe 2005; Rotunno and Houze 2007). Us-

ing idealized simulations, Colle (2004) noted that the

distribution and intensity of orographic precipitation is

highly dependent on the speed of the incident flow,

vertical wind shear, static stability, freezing level, and

dimensions of the mountain barrier. Observational

studies confirm these sensitivities and highlight the sig-

nificance of low-level flow patterns (blocked or un-

blocked) on the distribution of orographic precipitation

(Neiman et al. 2002; Stoelinga et al. 2003; Rotunno and

Houze 2007; Smith et al. 2012).

Recent increases in computing capabilities in the

United States have allowed for the assembling of opera-

tional, ad hoc CPEs such as the Storm Prediction Center

Storm-ScaleEnsemble ofOpportunity (SSEO; Jirak et al.

2012, 2016) and the HRRR Time-Lagged Ensemble

(HRRR-TLE; Alexander et al. 2011), as well as the de-

velopment of an experimental, but formally designed,

ensemble prediction system (EPS), the NCAREnsemble

(NCAR ENS; Schwartz et al. 2015). Additionally, in

Europe, several operational CPEs have been developed

including the Météo-France Applications of Research to

Operations at Mesoscale–Ensemble Prediction System

(AROME-EPS; Bouttier et al. 2012; Vié et al. 2012), the
Deutscher Wetterdienst Consortium for Small-Scale

Modeling Ensemble Prediction System (COSMO-DE-

EPS; Gebhardt et al. 2011), and the Met Office Global

andRegional Ensemble Prediction System (MOGREPS-

UK; Tennant 2015; Hagelin et al. 2017). A key difference

among theseCPEs is in themethods used to produce a set

of forecasts. For example, the SSEO uses a multimodel,

multiphysics approach (Jirak et al. 2012), whereas the

HRRR-TLE simply uses a series of time-lagged forecasts

(Alexander et al. 2011). The NCAR ENS, AROME-

EPS, and MOGREPS-UK systems utilize ensemble data

assimilation to perturb the initial conditions (Bowler et al.

2008; Vié et al. 2012; Schwartz et al. 2015), whereas

nonstochastic physics perturbations are implemented in

COSMO-DE-EPS (Gebhardt et al. 2011).

Themajority of validation studies involving CPEs have

focused on how different ensemble methods and model

configurations affect their performance (e.g., Bouttier

et al. 2012; Vié et al. 2012; Ben Bouallègue et al. 2013;

Romine et al. 2014; Johnson and Wang 2016; Melhauser

et al. 2017). Several have also investigated the ability of

CPEs to forecast specific weather phenomena such as

tornadoes (Gallo et al. 2016), convective initiation near

the dryline (Trier et al. 2015), hurricanes (Munsell et al.

2015; Zhang and Weng 2015), and stationary convective

rainbands (Barrett et al. 2016). Although limited, studies

comparing the warm-season QPF performance of CPEs

to convection-parameterizing ensembles have largely

produced promising results (Clark et al. 2009; Duc et al.

2013; Schellander-Gorgas et al. 2017). However, work

systematically intercomparing cool-season QPF perfor-

mance from CPEs and convection-parameterizing en-

sembles is needed, as cool-season precipitation causes

many hazards, such as flooding, avalanches, and traffic

and air accidents. Thus, this paper evaluates the perfor-

mance of cool-season QPFs produced by the 3-km,

10-member, convection-permitting NCAR Ensemble

relative to several operational deterministic and proba-

bilistic models at mountain locations throughout the

western United States.

In section 2, we describe the models, datasets, and

methods used in the paper, with key results and a model

performance intercomparison presented in section 3.

The paper concludes with a summary, including a dis-

cussion of the significance of our findings for future

model development and operational forecasting over

the western United States.
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2. Data and methods

a. NCAR Ensemble

Described in depth by Schwartz et al. (2015), theNCAR

ENS produces forecasts for the conterminous United

States and consists of an analysis component run at 15-km

grid spacing and a 10-member forecast component run at

3-km grid spacing. Both the analysis and forecast compo-

nents use version 3.6.1 of the Advanced Research version

of WRF (WRF-ARW) with 40 vertical levels and a pa-

rameterization suite that includes the Thompson micro-

physics scheme (Thompson et al. 2008), the Rapid

Radiative Transfer Model for GCMs (RRTMG) with

ozone and aerosol climatologies for long- and shortwave

radiation (Mlawer et al. 1997; Iacono et al. 2008; Tegen

et al. 1997), the Mellor–Yamada–Janjić (MYJ) planetary

boundary layer (PBL) scheme (Mellor and Yamada 1982;

Janjić 1994, 2002), and theNoah land surfacemodel (Chen

and Dudhia 2001). The analysis component also uses the

Tiedtke cumulus parameterization (Tiedtke 1989). In the

analysis component, an 80-member1 continuously cycling

ensemble adjustment Kalman filter (EAKF; Anderson

2001, 2003) produces analyses every 6h (0000, 0600, 1200,

and 1800 UTC). At 0000 UTC, the forecast component is

initialized by interpolating 10 members of the analysis

component onto a 3-km grid nested within the 15-km

domain. The forecast component then produces 48-h,

10-member, 3-km forecasts. The smaller number of 3-km

ensemble forecast members compared to those in the

EAKF system reflects computational constraints. Never-

theless, 10 members are sufficient to produce skillful

probabilistic forecasts (Clark et al. 2009, 2011; Schwartz

et al. 2014). For convenience, we refer to member 1 as the

controlmember (hereafterNCARENSCTL).All NCAR

ENS forecasts were obtained from NCAR’s Research

Data Archive (RDA).

b. Operational models

We also examine the performance of several NCEP

operational modeling systems including the HRRR,

NAM-3km, Global Forecast System (GFS), and SREF.

The SREF contains two dynamical cores, the WRF-

ARW and the NCEP Nonhydrostatic Multiscale Model

on the B grid (NMMB), each producing 13 ensemble

members (Du et al. 2015). The control members of each

core are referred to as the SREF ARW CTL and SREF

NMMB CTL.

The most recent operational version of each model as

of the end of the 2016/17 cool season (31 March 2017) is

used for the entirety of the validation period.2 In the case

of the NAM-3km, which underwent a significant upgrade

during the 2016/17 cool season (Rogers et al. 2017), par-

allel, preoperational runs are used prior to their opera-

tional implementation in mid-March, after which

operational runs are used. HRRR and SREF forecasts

were acquired from NCEP’s NOAA Operational

Model Archive and Distribution System (NOMADS).

GFS forecasts and preoperational forecasts from the

NAM-3km were provided by the NCEP Environmental

Modeling Center (EMC). All modeling systems are

validated using output grids at their respective hori-

zontal grid spacing. Table 1 provides a summary of

basic information for each NCEP modeling system,

and Fig. 1a shows the forecast domain of each

regional model.

c. Precipitation observations and analyses

Gauge-based precipitation observations from the

Snow Telemetry (SNOTEL) network are used to assess

the performance of QPFs and PQPFs at mountain lo-

cations. SNOTEL sites are designed to collect snow-

pack, precipitation, and related climatic data. There are

currently over 800 sites operated and maintained by the

Natural Resources Conservation Service (NRCS).

SNOTEL sites are typically located in sheltered loca-

tions that receive substantial snowfall. Precipitation is

measured in large storage gauges that measure hourly

accumulated precipitation with a precision of 0.1 in.

(;2.54mm) using a manometer and pressure transducer

(Serreze et al. 1999). Each gauge has a 30.5-cm orifice

and an Alter wind shield to reduce undercatchment.

Because of their sheltered locations, wind speeds

at SNOTEL sites are generally less than 2m s21

(Ikeda et al. 2010). Nevertheless, undercatchment of

;10%–15% has been shown for similar gauges under

such conditions (Yang et al. 1998; Fassnacht 2004;

Rasmussen et al. 2012) and likely artificially increases

the model biases in our results. Such undercatch is likely

more significant at sites that are windier and receive

lower-density snow. Although the SNOTEL sites report

hourly precipitation, we use only 24-h (1200–1200 UTC)

accumulated precipitation totals to minimize the effect

of artificial changes in the amount of reported pre-

cipitation as the ambient temperature fluctuates di-

urnally, causing the fluid in the precipitation gauges to

expand and contract. Other issues that may affect

SNOTEL precipitation data include transmission errors,

instrument malfunction, and snow adhesion to the gauge

1 The analysis component initially consisted of 50 members but

was upgraded to 80 members in May 2016.

2 NCEP upgraded the GFS in July 2017, so the forecasts vali-

dated here are not from the current operational version.
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walls. Owing to these issues, we quality control the

SNOTEL data following Lewis et al. (2017), resulting in

data from 670 stations being available for validation.

Sites that hadmissing or erroneous data on 20%ormore

of the cool-season days were removed.

We also use daily (1200–1200 UTC) precipitation ana-

lyses produced by the Parameter-Elevation Relationships

on Independent SlopesModel (PRISM)ClimateGroup at

Oregon State University (Daly et al. 1994, 2008; Di Luzio

et al. 2008) to further illustrate the spatial characteristics of

model biases in selected mountainous regions. PRISM

analyses are produced by interpolating observational point

data onto a high-resolution grid and modifying for eleva-

tion changes. The degree ofmodification in each grid cell is

dependent on topographic aspects and the orographic ef-

fectiveness of the local terrain (Daly et al. 2008). The daily

analyses are available on a ;4-km grid.

d. Verification

Although forecasts by the NCAR ENS are available

beginning in April 2015, we focus on the 2016/17 cool

season because of the availability of forecasts from the

most recent versions of all NCEP operational models,

except the GFS. Here, the 2016/17 cool season is defined

as from 1 October 2016 through 31 March 2017. Each

day, we validate 24-h QPFs ending at 1200 UTC on the

day of interest. For example, 25 January refers to the

24-h period ending at 1200UTC 25 January.We omitted

from the study any days without an available forecast

from any modeling system. Out of the 182 days during

the 2016/17 cool season, 28 days are omitted, which

largely reflects the unavailability of the preoperational

NAM-3km runs.

For all modeling systems except theHRRRand SREF,

we perform validation using the 12–36-h QPFs initialized

at 0000UTC. Because theHRRRonly provides forecasts

to 18h, we merge the 3–15-h QPFs from the forecasts

initialized at 0900 and 2100 UTC to obtain an equivalent

24-hQPF.We chose to begin the validation at 3h to avoid

spinup biases that have been shown to be minimal by

forecast hour 3 (Bytheway and Kummerow 2015). The

SREF does not run at 0000 UTC, so we use the 9–33-h

QPFs from forecasts initialized at 0300 UTC. Following

Lewis et al. (2017), all model QPFs are bilinearly in-

terpolated to each SNOTEL site or PRISM grid point for

calculations. Nearest-neighbor interpolation was also

tested and produced nearly identical results.

In addition to deterministically verifying ensemble

control members, we also evaluate the performance of

the NCAR ENS, SREF ARW, and SREF NMMB en-

semble mean (EM) and probability matched mean

(PMM; Ebert 2001). The EM at each SNOTEL site is

simply the sum of all members’ QPFs at the site divided

by the number of ensemble members. The PMM is

calculated following the method described in Ebert

(2001) with matching restricted to the western United

States (see Fig. 1b for geographical area).

A thorough evaluation of QPF requires an un-

derstanding of model biases and the analysis of several

statistical verification measures (Schaefer 1990; Brill

2009). Following Mason (2003), we use statistical

measures based on a standard 2 3 2 contingency table

(Table 2) to evaluate deterministic forecasts including

hit rate5
a

a1 c
5

hits

observed events
, (1)

false alarm ratio5
b

a1 b
5

false alarms

forecasted events
, (2)

and

equitable threat score (ETS)5
a2 a

ref

a2 a
ref

1 b1 c
, (3)

where

a
ref

5
(a1 c)3 (a1 b)

n
, (4)

TABLE 1. Characteristics of modeling systems and forecasts used in this study.

Forecast

system Acronym

Modeling

center

Approximate

horizontal

grid spacing (km)

Convective

parameterization

No. of

ensemble

members

QPF

used

NCAR

Ensemble

NCAR ENS NCAR 3 — 10 12–36 h from 0000 UTC

HRRRv2 HRRR NCEP 3 — — 3–15 h from 0900 and 2100 UTC

NAMv4 3-km

CONUS nest

NAM-3km NCEP 3 — — 12–36 h from 0000 UTC

GFSv13.0.2 GFS NCEP 13 Simplified Arakawa–

Schubert

— 12–36 h from 0000 UTC

SREFv7.0 SREF NCEP 16 Multiple 26 9–33 h from 0300 UTC
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a is the number of hits, b is the number of false alarms, c

is the number of misses, d is the number of correct re-

jections, and n is the total number of forecast–observation

pairs. Hit rate measures the fraction of observed events

correctly forecasted, false alarm ratio expresses the

fraction of forecasted events that were false alarms, and

ETS measures the fraction of observed and/or forecasted

events that were correctly forecasted, adjusted for the

frequency of hits expected by chance (climatology).

While modern, convective-scale verification measures

including ‘‘neighborhood’’ approaches have been de-

veloped (e.g., Ebert 2008), we use the point-based ETS

because cool-season precipitation in mountainous re-

gions is strongly tied to terrain. Issues would arise using

neighborhood approaches because of the dramatic

changes in precipitation climatology over small spatial

scales that exist in mountainous regions. Although

varying climatological event frequencies among sites

can affect ETS (Hamill and Juras 2006), we use the

traditional ETS since Lewis et al. (2017) found that a

weighted average ETS for 10 subgroups of SNOTEL

sites was similar to the traditional ETS.

We determine the quality of probabilistic forecasts

from ensembles by computing their reliability and res-

olution, which are defined as

reliability5
1

N
�
K

k51

n
k
(f

k
2 o

k
)2 and (5)

resolution5
1

N
�
K

k51

n
k
(o

k
2 o)2 , (6)

where N is the total number of forecasts, K is the total

number of unique probabilistic forecast bins, o is the

observed climatological frequency of the occurrence of

the event, nk is the number of forecasts in the kth bin,

and ok is the observed frequency of the occurrence of the

event given forecasts of probability fk. Reliability as-

sesses the statistical consistency between predicted

probabilities and observed relative frequencies, whereas

resolution measures the ability of an ensemble to dis-

tinguish when the event of interest occurs with lower or

higher frequency than climatology. We also calculate

the Brier score (BS) for each ensemble, which measures

the mean squared probability error and is given by

BS5 reliability2 resolution1 uncertainty, (7)

where

uncertainty5 o(12 o) . (8)

Additionally, we measure the skill of the ensemble by

computing the Brier skill score (BSS; Brier 1950;

Murphy 1973; Wilks 2011), which is defined as

FIG. 1. (a)NCARENS,HRRR, andNAM-3km forecast domains.

The SREF forecast domain covers all of North America, and the

GFS forecast domain covers the entire globe. (b) Geographic

terms referenced in text and 30-arc-s topography (m MSL, color

scale at bottom).

TABLE 2. Contingency table used for validation.

Observed

Yes No Total

Forecast Yes Hit (a) False alarm (b) a 1 b

No Miss (c) Correct rejection (d) c 1 d

Total a 1 c b 1 d n
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BSS5 12
BS

BS
Cl

, (9)

where BSCl is the BS of climatology and equal to Eq. (8).

Good ensemble performance is indicated by lower

values of BS and reliability and higher values of BSS and

resolution. We use attributes diagrams to visually assess

these statistical measures and evaluate other ensemble

characteristics (Toth et al. 2003). Consistency resam-

pling (Brocker and Smith 2007) and bootstrap resam-

pling (Hamill 1999; Efron and Tibshirani 1993) are

employed to produce 5% and 95% consistency bars and

confidence intervals, respectively, for the attributes di-

agrams, which involve resampling 1000 times and

choosing N samples with replacement.

All of these measures require that the event of interest

be dichotomous (yes/no). Therefore, we apply a threshold

to each event, which we define as the total accumulated

observed or forecast precipitation during a 24-h (1200–

1200 UTC) period (including 24-h periods with no pre-

cipitation). In addition to using absolute event thresholds

(e.g., 15, 20, 25mm, etc.), we use event percentile

thresholds (e.g., 75th, 80th, 85th percentile, etc.). Follow-

ing Roberts and Lean (2008) and Dey et al. (2014), we

compute the distribution of events observed at SNOTEL

sites and forecasted by each deterministic model and en-

semblemember to determine percentile thresholds for the

observed and forecast events. Because we compare per-

centile thresholds from observed and forecast events, the

absolute thresholds corresponding to a given percentile

threshold for the observations and forecasts can differ. For

example, the 95th percentile, which represents the top 5%

of events, may be 35mm for a certain model and 25mm

for SNOTEL observations. This method implicitly re-

moves bias, allowing for an assessment of the placement of

precipitation within the context of each model’s clima-

tology and reduces sampling issues resulting from differ-

ing observed and forecast precipitation climatologies

across the western United States.

3. Results

a. Observed and forecast cool-season precipitation
characteristics

1) SYNOPSIS OF 2016/17 COOL-SEASON

PRECIPITATION

Significant spatial variations in precipitation existed

across the western United States during the 2016/17 cool

season. The cool season was generally wetter than

average across all of the western United States, except

for portions of Colorado, southern Utah, Arizona, and

NewMexico, where precipitation was average to slightly

below average (not shown). At upper elevations, mean

daily precipitation ranged from.16mm in the Cascades

and coastal ranges of the Pacific Northwest to,3mm in

parts of the Rocky Mountains of Colorado and New

Mexico, as well as other climatologically dry ranges

of the western U.S. interior (Figs. 2a,b; see Fig. 1b for

geographic references). Measureable precipitation

($2.54mm)3 occurred on ;70%–80% of days in the

Cascades and coastal ranges of the Pacific Northwest,

;45%–70% of days in the Sierra Nevada and northern

interior ranges, and;25%–45% of days in the southern

interior ranges (Figs. 3a,b). The magnitudes of the 85th

and 95th percentile events were generally greatest in the

Cascades, coastal ranges from northern California to

Washington, and Sierra Nevada, and decreased toward

the interior ranges (Figs. 4a–d). SNOTEL sites with

relatively large 85th and 95th percentile events in the

interior were found in the Idaho panhandle and the

Mogollon Rim of Arizona (Figs. 4a,c), regions that re-

ceive relatively large fractions of their climatological

cool-season precipitation from inland-penetrating at-

mospheric rivers (Rutz et al. 2014, 2015).

2) MODEL BIASES

The ratio of forecast to observed mean daily pre-

cipitation (i.e., the bias ratio) identifies SNOTEL site

locations where amodel over- (bias ratio. 1) or under-

(bias ratio, 1) predicts the total observed cool-season

precipitation. Given undercatch and observational

uncertainty, we consider bias ratios of 0.85–1.2 to be

reflective of a near-neutral bias. For ensembles, we

focus on the control member of each dynamical core.

The NCAR ENS has one (NCAR ENS CTL) and the

SREF two control members (SREF ARW CTL and

SREF NMMB CTL). Other members in each core

exhibit similar bias ratios as their respective control

runs, as will be shown in section 3c. At SNOTEL sites,

the NCAR ENS CTL produces mean bias ratios ; 1

with relatively low standard deviations of bias ratios

over all SNOTEL sites, indicating its ability to accu-

rately produce total cool-season precipitation at

mountain locations (Fig. 5a). Aside from a dry bias at

SNOTEL sites in Idaho and northwest Montana, the

HRRR exhibits bias ratios similar to the NCAR ENS

CTL (Fig. 5b). The NAM-3km exhibits a large mean

bias ratio of 1.319, indicative of a substantial wet bias

(Fig. 5c). Although the GFS and SREFARWCTL also

3 The precision of the precipitation gauges at SNOTEL sites is

0.1 in. (2.54mm). Hence, the minimum amount of precipitation

they can record is 2.54mm.
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produce mean bias ratios of ;1, relatively high stan-

dard deviations (0.397 and 0.434, respectively) reflect

sizeable dry or wet biases at individual SNOTEL sites

(Figs. 5d,e). In contrast, the SREF NMMB CTL has a

significant dry bias, especially in southern Utah and

Colorado (Fig. 5f).

FIG. 2. (a)Mean daily precipitation at SNOTEL sites (mm; color scale at bottom right) and 30-arc-s topography

(mMSL; gray-shaded scale at bottom left). (b) Mean daily precipitation from PRISM analyses [mm; color shaded

as in (a)].

FIG. 3. (a) Frequency of precipitation events ($2.54mm) from SNOTEL observations (color scale at bottom) and

30-arc-s topography (as in Fig. 2a). (b) As in (a), but from PRISM analyses.
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Following Lewis et al. (2017), we divide the SNOTEL

sites into two regions, Pacific ranges and interior ranges,

that feature highly differentiated climatologies and ter-

rain characteristics (Fig. 6). Intermediate stations are

not presented for brevity. Time series of accumulated

precipitation averaged over all SNOTEL sites in each

region provide information regarding regional model

biases (Fig. 7). The NCARENSCTL generated;112%

of the total observed precipitation over the Pacific

ranges and about as much precipitation as observed by

SNOTEL sites over the interior ranges. The HRRR

produced only;86% of the total observed precipitation

in the interior ranges, reflective of a dry bias, but agreed

more closely with observations in the Pacific ranges.

Total precipitation produced by the GFS was close to

observed in both regions. The NAM-3km produced

excessive precipitation in both regions, especially over

the interior ranges where it produced ;130% of the

total observed precipitation. The SREF ARW CTL’s

total predicted precipitation was slightly greater than

FIG. 4. (a) Magnitude of 85th percentile events at SNOTEL sites (mm; color scale at bottom) and 30-arc-s

topography (as in Fig. 2a). (b) As in (a), but from PRISM analyses. (c),(d) As in (a),(b), but for 95th

percentile events.
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FIG. 5. Bias ratios at SNOTEL sites (color scale at bottom) and 30-arc-s topography (as in

Fig. 2a) with mean bias ratio and standard deviation (SD) annotated: (a) NCAR ENS CTL,

(b) HRRR, (c) NAM-3km, (d) GFS, (e) SREF ARW CTL, and (f) SREF NMMB CTL.
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observed in both regions, while the SREF NMMB CTL

produced the least total precipitation in both regions,

including only ;78% of total observed precipitation

over the Pacific ranges. Overall, these results are con-

sistent with Fig. 5.

Bias ratios computed relative to PRISM analyses il-

lustrate some of the spatial characteristics of pre-

cipitation forecasts over the western United States. For

brevity, we focus on bias ratios over the complex terrain

surrounding Salt Lake City, Utah (SLC), and Lake

Tahoe, California. In the region surrounding SLC, bias

ratios produced by the NCAR ENS CTL, HRRR, and

NAM-3km generally increase from west (windward

side) to east (leeward side) across the Stansbury

Mountains, Oquirrh Mountains, and Wasatch Range

(Figs. 8a–c). The NCAR ENS and HRRR, for example,

produce bias ratios , 1 on the western slopes, ;1 near

the crests, and .1 on the eastern slopes of these

mountain ranges (Figs. 8a,b). Although the NAM-3km

has a wet bias over the eastern and western slopes of all

three ranges, its local bias ratio maxima are on the

eastern slopes, consistent with a bias ratio increase from

west to east (Fig. 8c). Despite poorly resolving the three

ranges, the GFS also exhibits a general tendency for the

bias ratio to increase from the windward to leeward

slopes (Fig. 8d). The SREF ARW CTL and SREF

NMMB CTL overpredict valley precipitation and un-

derpredict mountain precipitation (Figs. 8e,f).

In the region surrounding Lake Tahoe, bias ratios

produced by the NCAR ENS CTL, HRRR, and

NAM-3km similarly increase from west to east across

the Sierra Crest, Carson Range, and Pine Nut Moun-

tains, with all three models exhibiting pronounced wet

biases on their eastern (leeward) slopes (Figs. 9a–c).

Bias ratios for the GFS, SREF ARW CTL, and SREF

NMMB CTL exhibit minimal topographic dependence

over the Sierra Crest and are generally ,1 over the

Carson Range and Pine Nut Mountains (Figs. 9d–f).

Overall, the cross-barrier characteristics evident

above broadly represent spatial bias ratio characteristics

across the west. Although the mean bias ratio varies

regionally, NCAR ENS, HRRR, and NAM-3km bias

ratios typically increase as one moves climatologically

downstream across mountain barriers, which could re-

flect either systematic biases in these modeling systems

or PRISM analysis methods. If this reflects a model bias,

it may be the result of terrain smoothing leading to

poorly resolved orographic processes and/or deficiencies

in microphysical parameterizations that allow too much

precipitation to be carried over mountain crests. Aside

from a dry bias over very narrow mountain ranges (i.e.,

Carson Range), spatial bias ratio characteristics in the

lower-resolution GFS, SREF ARW CTL, and SREF

NMMB CTL are less generalizable, likely because very

narrow mountain ranges are not resolved and wider

mountain ranges are inadequately represented.

Next, we bin events (2.54-mm intervals) to examine

the ratio of forecast to SNOTEL-observed event fre-

quencies (i.e., frequency bias) as a function of event size

(Fig. 10). We assume frequency biases . 1.2 reflect a

clear overprediction of event frequency and ,0.85 a

clear underprediction. Except for the NAM-3km, which

overpredicts events . 36mm, and SREF NMMB CTL,

which underpredicts events , 30mm, all models gener-

ally exhibit frequency biases between 0.85 and 1.2 for all

event sizes in the Pacific ranges (Fig. 10a). Aside from

the HRRR, frequency bias scores are generally worse

over the interior ranges (Fig. 10b). TheNCARENSCTL

overpredicts events . 28mm and the NAM-3km over-

predicts events. 18mm. TheNAM-3km overprediction

grows nearly monotonically with event size, with a fre-

quency bias . 2 for events . 39mm. The GFS ex-

hibits better frequency biases than the NCARENS CTL

and NAM-3km, but the GFS underpredicts events .
42mm. Except for an overprediction of events. 42mm,

the SREF ARW CTL generally displays no clear

signs of overprediction or underprediction. The SREF

NMMB CTL significantly underforecasts the frequency

of events , 22mm and overforecasts the frequency of

events. 38mm.

FIG. 6. Regional classification of SNOTEL sites and 30-arc-s

topography (as in Fig. 2a).
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Overall, we find the least bias present in the NCAR

ENS CTL and HRRR. Both models produce accurate

cool-season precipitation totals at most SNOTEL sites.

A slight wet bias in the NCARENS CTL and dry bias in

the HRRR is revealed when looking at total pre-

cipitation averaged over both regions. Aside from the

NCAR ENS CTL producing too many large events in

the interior ranges, both models generate an accurate

number of events. Conversely, the NAM-3km exhibits a

significant wet bias at most SNOTEL sites, while the

GFS and SREF ARW CTL have minimal bias for cu-

mulative SNOTEL site statistics, but a substantial wet or

dry bias from site to site. The site-to-site variations in

bias may at least partially reflect terrain smoothing, as

discussed above. A dry bias due to too few small and

moderate events is found in the SREF NMMB CTL.

3) DISTRIBUTIONS OF FORECAST EVENTS

We now focus on forecasts and their corresponding

observations (i.e., event pairs) using bivariate histograms

(Fig. 11). Bias is reflected by frequent event pairs falling

above (underprediciton) or below (overprediction) the

1:1 line, while precision is reflected by limited scatter of

event pairs. Ideally, a model has minimal bias and high

precision. Median values for each dimension of the bi-

variate histogram are plotted to help interpretation. In

both regions, the NCAR ENS CTL has frequent event

pairs falling near the 1:1 line, indicating minimal bias and

moderate precision (Figs. 11a,g). Aside from a slight

tendency for event pairs, 20mm to fall above the 1:1 line

(underprediciton) in the Pacific ranges, the HRRR dis-

plays minimal bias and greater precision than the NCAR

ENS CTL (Figs. 11b,h). Consistent with its previously

discussed wet bias, the NAM-3km has frequent event

pairs falling below the 1:1 line for all event sizes in both

regions, reflecting frequent overprediction (Fig. 11c,i).

The GFS exhibits minimal bias and moderate precision,

similar to the NCAR ENS CTL (Figs. 11d,j). The SREF

ARW CTL displays low precision in both regions and

overprediction for events , 22mm (Figs. 11e,k). Low

FIG. 7. Mean observed and forecast accumulated cool-season precipitation at SNOTEL

sites in the (a) Pacific ranges and (b) interior ranges. Light green (light brown) shading in-

dicates values above (below) the SNOTEL mean.
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FIG. 8. Bias ratios relative to PRISM analyses (following scale at bottom) and SNOTEL

observations (filled circles following scale at bottom) in the region surrounding SLC for the

(a) NCAR ENS CTL, (b) HRRR, (c) NAM-3km, (d) GFS, (e) SREF ARW CTL, and

(f) SREF NMMBCTL. The 1-arc-min topography is smoothed using a rectangular smoother

and contoured every 200m from 1300 (light gray) to 3300m MSL (black). Mountain ranges

are annotated in (a).
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FIG. 9. As in Fig. 8, but for the Lake Tahoe region and topography contoured every 200m

from 1000 (light gray) to 2800m MSL (black). Lake Tahoe is annotated for reference in (a).
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precision is shown by the SREF NMMB CTL with min-

imal correlation between forecasts and observations

(Figs. 11f,l). Considering that high precision and minimal

bias indicate good accuracy, the HRRR features the

greatest accuracy, followed by the NCAR ENS CTL and

GFS. The NAM 3-km frequently overpredicts events,

leading to poor accuracy, while the SREFARWCTLand

especially the SREF NMMB CTL are characterized by

low precision and are least accurate.

b. Deterministic accuracy measures

We now evaluate statistical measures based on a

standard 2 3 2 contingency table using absolute event

thresholds to determine model performance character-

istics as a function of event size. Aided by its wet bias,

the NAM-3km scores the highest hit rates over both

regions for all event thresholds (.0.6 over Pacific ranges

and generally .0.4 over interior ranges; Figs. 12a,b).

The NCAR ENS CTL, HRRR, GFS, and SREF

ARW CTL produce similar hit rates for event

thresholds , 23mm, while the NCAR ENS CTL and

HRRR score slightly higher than the GFS and SREF

ARW CTL for event thresholds . 23mm over the

Pacific ranges. Over the interior ranges, the NCARENS

CTL’s hit rate improves relative to other models and is

greater than or equal to the HRRR’s for all event

thresholds (Fig. 12b). The hit rates for the GFS and

SREF ARW CTL drop off considerably for event

thresholds. 23mm over the interior ranges. The SREF

NMMBCTL performs poorly in both regions, recording

hit rates , 0.5 for all event thresholds (Figs. 12a,b).

The HRRR produces the lowest false alarm ratios for all

thresholds inboth thePacificand interior ranges (Figs. 12c,d).

Again, we find a substantial improvement in the NCAR

ENS CTL’s scores over the interior ranges compared to

the Pacific ranges (Figs. 12c,d); its false alarm ratio is

relatively poor (.0.4 for event thresholds. 20mm) and

similar to that of the NAM-3km and SREF ARW CTL

over the Pacific ranges, but improves relative to all other

models and is similar to that of the GFS over the interior

ranges (Figs. 12c,d). Even with its significant dry

bias, the SREF NMMB CTL records the worst false

FIG. 10. Frequency bias as a function of event size at SNOTEL sites in the (a) Pacific ranges

and (b) interior ranges. Green (brown) shading indicates bias ratios $ 1.2 (#0.85). Samples

size in each bin is shown in inset histograms.
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alarm ratios for all event thresholds over both regions

(Figs. 12c,d).

Over both the Pacific and interior ranges, the HRRR

and NAM-3km generally produce the highest ETSs

(Figs. 12e,f). Because models with larger biases tend to

have higher ETSs (Mason 1989), the NAM-3km’s ETS is

likely aided by its wet bias. The GFS is more skillful

(larger ETSs) than the NCAR ENS CTL over the Pacific

ranges but is less skillful (smaller ETSs) over the interior

ranges. Consistent with other statistical measures, the

SREF ARWCTL and especially the SREF NMMBCTL

exhibit less skill over both ranges (Figs. 12e,f). A general

decline in ETSs by all models is evident over the interior

ranges, especially for event thresholds . 25mm. Overall,

the highest-resolution deterministic models perform best,

as they are able to better resolve the terrain and thus

orographic precipitation. TheNCARENSCTLmay have

less skill relative to all othermodels over the Pacific ranges

compared to the interior ranges because the western

boundary of its 3-km forecast domain is very close to the

Pacific coast relative to the other models (Fig. 1a).

We now focus on the same deterministic measures using

upper-quartile and greater percentile event thresholds to

evaluate bias-corrected model performance. Percentiles

computed from SNOTEL observations and model fore-

casts reveal biases consistent with previous results (Fig. 13).

FIG. 11. Bivariate histograms of forecast and observed precipitation at SNOTEL sites in the Pacific ranges for the (a) NCAR ENS CTL,

(b)HRRR, (c)NAM-3km, (d)GFS, (e) SREFARWCTL, and (f) SREFNMMBCTL. (g)–(l)As in (a)–(f), but over the interior ranges. Red

(blue) dots represent the median observed (forecast) event size in each bin. Dots are not shown for bins with fewer than 50 events.
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In general, bias correction improves the hit rate of

models with a dry bias (i.e., the HRRR) and reduces the

hit rate of models with a wet bias (i.e., the NAM-3km).

Therefore, the HRRR exhibits the highest hit rates in

both regions, followed by the NAM-3km andGFS in the

Pacific ranges and the NAM-3km and NCARENS CTL

in the interior ranges (Figs. 14a,b). Contrary to the effect

of bias correction on hit rates, false alarm ratios worsen

(increase) for models with a dry bias and improve (de-

crease) for models with a wet bias when bias correction

is applied (Figs. 14c,d). The impact of removing bias on

ETS is subtler, but we do find slight improvements in the

scores of models with a dry bias and slight declines in the

scores of models with a wet bias, such that the HRRR

produces higher ETSs than the NAM-3km over both

regions for almost all thresholds (Figs. 14e,f). The rela-

tive decrease in all three metrics for all models at the

85th percentile threshold over the interior ranges

(Figs. 14b,d,f) is due to the discrete nature of SNOTEL

data, which results in the same absolute threshold cor-

responding to a range of percentile thresholds (Fig. 13b).

This does not affect intraregional model comparisons.

Overall, we find the bias-corrected results (Fig. 14) to be

generally consistent with the non-bias-corrected results

(Fig. 12) when accounting for the impact that bias has on

these three statistical measures.

FIG. 12. Verification metrics based on Table 2 as a function of absolute event thresholds (mm) at SNOTEL sites.

(a) Hit rate in the Pacific ranges. (b) Hit rate in the interior ranges. (c),(d) As in (a),(b), but for false alarm ratio.

(e),(f) As in (a),(b), but for ETS.
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TheEMandPMMcanbe calculated to simplify ensemble

information into a single forecast (Clark 2017). An evalua-

tion of the performance of the NCAR ENS, SREF ARW,

and SREF NMMB CTL, EM, and PMM using the same

bias-corrected, deterministic measures as above reveals

general improvement relative to their respective control

members (Fig. 15). The NCAR ENS and SREF NMMB

EM and PMM produced higher hit rates, lower false alarm

ratios, and higher ETSs than their control members for all

percentile thresholds in both regions. Although less dis-

cernible and not true for all percentile thresholds, this be-

havior is largely the case for the SREFARWCTL,EM, and

PMMaswell.Differences between theEMandPMMfor all

ensembles are negligible, possibly because the utility of the

PMM in restoring amplitude to the EM precipitation field is

reduced when the precipitation forcing mechanism is static

(i.e., terrain). The improvement in the SREF NMMB EM

andPMMover its control is so large that theyexhibit thebest

ETSs for all event percentile thresholds over the Pacific

ranges (Fig. 15e). This improvement in the SREF NMMB

and relative lack of improvement in the NCAR ENS and

SREF ARW is likely due to significant spread in the SREF

NMMB and minimal spread in the NCARENS and SREF

ARW, as shown in section 3c.

c. Probabilistic verification

Similar to the method used for bias-corrected, de-

terministic validation, we examine PQPFs from the

NCAR ENS and SREF using percentile event thresh-

olds. Non-bias-corrected PQPFs were also inspected

and produced very similar results (not shown). Ideally,

each member of an ensemble should be equally likely to

be closest to the ‘‘truth,’’ and, thus, all members should

have similar climatologies. A tight packing of pre-

cipitation distributions for each member of the NCAR

ENS reveals that all members indeed have similar cli-

matologies, confirming the expectation of equal likeli-

hood, where the climatologies are characterized by awet

bias for the 80th percentile and larger events in both

regions (Fig. 16). Conversely, an exceptional bifurcation

is present in the distributions of SREF members as a

result of its use of two dynamical cores. Clearly, the

design of the SREF violates the principal of equal like-

lihood. Members within each core also exhibit greater

spread than the NCAR ENS, reflecting the use of mul-

tiple physical parameterizations in the SREF (Table 1).

While the SREF ARWmembers contain a wet bias, the

SREF NMMB members exhibit a sizeable dry bias, es-

pecially for 85th percentile events and smaller (Fig. 16).

Because of the dramatic differences in the climatologies

of the two SREF cores, we examine the performance

of the individual cores in addition to the entire

26-member SREF.

We use attributes diagrams to assess the probabilistic

performance of the NCAR ENS, SREF, and the indi-

vidual dynamical cores of the SREF (SREF ARW and

FIG. 13. Forecast and observed absolute event thresholds (mm) corresponding to percentile thresholds for all

forecast and observed events at SNOTEL sites in the (a) Pacific ranges and (b) interior ranges.
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the SREF NMMB) at forecasting 85th and 95th per-

centile events. Attributes diagrams provide information

regarding the Brier score decomposition (reliability,

resolution, and uncertainty) and other characteristics of

each ensemble. Forecast probability bins of 0%–5%,

5%–15%, . . . , 85%–95%, and 95%–100% are used to

construct and compute attributes diagrams and statis-

tics. The shapes of the reliability curves for the SREF

and especially the NCAR ENS for the 85th percentile

events in both regions display overconfidence (Figs. 17a,b).

For example, over the Pacific ranges, when the NCAR

ENS forecasts a 90% probability that an 85th percentile

event will occur, it only occurs ;67% of the time,

whereas when it forecasts a 10% probability that the

event will occur, it occurs ;24% of the time (Fig. 17a).

The SREF has better reliability in both regions and

better resolution over the Pacific ranges, leading to

higher BSSs (0.340 57 over the Pacific ranges and

0.316 98 over the interior ranges) than the NCAR ENS

(0.296 01 over the Pacific ranges and 0.313 83 over the

interior ranges; Table 3). Although the BSS equally

weighs reliability and resolution, resolution is consid-

ered the most important attribute of an ensemble (Toth

et al. 2003). While reliability can be improved using a

posteriori calibration techniques, resolution cannot and

can only be increased by a clearer segregation of sce-

narios where the event of interest occurs with higher or

lower frequency than climatology (i.e., a better forecast

in a probabilistic sense). The forecast frequency histo-

grams reveal that the NCAR ENS forecasts high or low

FIG. 14. As in Fig. 12, but based on percentile thresholds (Fig. 13).
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probabilities more often than the SREF, indicating

better sharpness, the tendency of an EPS to produce

forecasts near 0 or 1 (Murphy 1993; Figs. 17a,b). How-

ever, this better sharpness is accompanied by over-

confidence and relatively poor reliability, indicating that

the NCAR ENS is likely spread deficient.

We find similar performance characteristics in the

NCAR ENS and SREF when focusing on the 95th

percentile event thresholds (Figs. 18a,b and Table 4).

Overconfidence is again evident in both ensembles, al-

though to a lesser extent than at the 85th percentile

threshold. While the SREF continues to outperform the

NCAR ENS over the Pacific ranges, with better re-

liability and resolution (Fig. 18a and Table 4), the

NCAR ENS produces a larger BSS over the interior,

aided by good resolution (Fig. 18b and Table 4). The

NCARENS forecasts probabilities of 1 more than twice

as often as the SREF over the interior ranges, indicating

more sharpness (Fig. 18b).

Although the SREF has a much coarser horizontal

grid spacing (16 km) than the NCAR ENS (3km), bias-

corrected PQPFs from the full 26-member SREF are

often more skillful, especially over the Pacific ranges.

While the NCARENS is relatively sharp, it is unreliable

as a result of insufficient spread. Conversely, the SREF

contains more spread, which arises largely because of its

two climatologically contrasting dynamical cores. Thus,

even though this enhanced spread improves SREF

verification metrics and suggests it is possible to

construct a convection-parameterizing EPS that verifies

FIG. 15. As in Fig. 14, but for NCAR ENS, SREF ARW, and SREF NMMB CTL, EM, and PMM.
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better than a CPE over mountainous terrain, the SREF

design clearly violates the principal of equal likelihood,

which muddles the interpretation of its PQPFs. For ex-

ample, it is inaccurate to state that there is a 70% chance

of an event occurring when 70% of SREF members

forecast the event to occur. However, interpretation of

PQPFs from equally likely ensembles (like the NCAR

ENS) is straightforward, but further developments are

needed to improve spread in these types of EPSs (e.g.,

Romine et al. 2014).

Evaluating the performance and characteristics of the

two 13-member SREF cores (SREF ARW and SREF

NMMB) provides insights into the characteristics of the

full, 26-member SREF. Under all scenarios (85th and

95th percentile event thresholds in both regions), the

SREF NMMB exhibits better reliability and resolu-

tion and, hence, a larger BSS, than the SREF ARW

(Figs. 17c,d and 18c,d and Tables 3 and 4). The SREF

ARW suffers from significant overconfidence under all

scenarios. Frequency histograms reveal a lack of

sharpness (large spread) in the SREF NMMB, espe-

cially over the interior ranges for 85th and 95th per-

centile event thresholds (Figs. 17d and 18d). Given that

one would not expect an individual member of an

ensemble with large spread to perform well de-

terministically, the large SREF NMMB spread corre-

sponds well with the poor performance of the SREF

NMMB CTL.

Although the 26-member SREF is generally more

skillful than the NCAR ENS, the NCAR ENS often

outperforms the individual SREF dynamical cores; the

NCAR ENS is more skillful than the SREF ARW over

the entire western United States and the SREF NMMB

over the interior ranges (Tables 3 and 4; see BSSs).

Therefore, when examining the 13-member SREF sub-

ensembles, the advantage of a CPE compared to a

convection-parameterizing EPS becomes more appar-

ent, which indicates that the full 26-member SREF

likely outperformed the NCAR ENS primarily because

forecasts from two dynamical cores were combined.

4. Conclusions

This study has evaluated the performance of pre-

cipitation forecasts from the convection-permittingNCAR

ENS and several operational forecast systems at high-

elevation SNOTEL sites across the western United States

during the 2016/17 cool season. TheNCARENSCTL and

HRRR exhibit superior precipitation biases as evinced by

the ratio of forecast-to-observed mean daily precipitation

and the ratio of forecast-to-observed event frequen-

cies. Because the HRRR precipitation forecasts are

effectively a combination of two short-term forecasts, the

HRRRmay have had an advantage compared to the other

NWP systems. The GFS and SREF ARW CTL produce

minimal overall bias but overpredicted or underpredicted

FIG. 16. As in Fig. 13, but for all members of the NCAR ENS, SREF ARW, and SREF NMMB.
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precipitation on a site by site basis. A significant wet bias is

revealed in the NAM-3km due to its tendency to produce

too many large events, especially over the interior ranges

for events $ 20mm, whereas the SREF NMMB CTL

generates too few moderate and small events # 20mm

over both regions, yielding a substantial dry bias.

Deterministic validation metrics (i.e., equitable threat

scores, hit rates, and false alarm ratios) using absolute event

thresholds indicate that the higher-resolution NCAR ENS

CTL, HRRR, and NAM-3km generally perform better

than the coarser GFS, SREF ARW CTL, and SREF

NMMB CTL. One exception is the performance of the

FIG. 17. Attributes diagrams for NCARENS and SREF forecast and SNOTEL observed 85th percentile events in

the (a) Pacific ranges and (b) interior ranges.Gray shadings indicate those probability bins that contribute positively to

the BSS with a reference of climatology. The 95% consistency bars and confidence intervals are shown on the perfect

reliability line and plotted reliability line, respectively. (c),(d) As in (a),(b), but for SREF ARW and SREF NMMB.

Forecast frequency histograms at bottom indicate number of forecasts in each forecast probability bin.
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NCARENSCTL over the Pacific ranges, where it exhibits

inferior ETSs and false alarm ratios than the GFS. The

SREF ARW CTL generally performs second worst for all

three metrics, while SREF NMMB CTL produces the

worst scores by a significant margin for all three metrics in

both regions.Consistentwith other studies (e.g., Lewis et al.

2017), the performance of all six models declines from the

Pacific to interior ranges.

We further bias correct these deterministic validation

metrics by using percentile event thresholds. The removal

of bias allows for a robust assessment of the placement of

precipitation within the context of each model’s clima-

tology. Overall, the bias-corrected results are generally

consistent with the non-bias-corrected results when ac-

counting for the impact that bias has on the deterministic

validation measures. For example, although the bias-

corrected ETSs are slightly lower for models with a wet

bias (i.e., the NAM-3km), we still find theHRRR, NAM-

3km, andGFS to exhibit the highest ETSs over the Pacific

ranges and the HRRR, NAM-3km, and NCAR ENS

CTL to exhibit the highest ETSs over the interior ranges.

Prior studies note varied results concerning the ben-

efits of decreasing horizontal grid spacing below 12km

over the western United States (Mass et al. 2002;

Grubi�sić et al. 2005; Hart et al. 2005). Our results in-

dicate that decreasing horizontal grid spacing to 3 km

increases the performance of cool-season QPFs, espe-

cially over the interior ranges of the western United

States. The importance of increased resolution over the

interior ranges may reflect their narrow nature, whereas

the Pacific ranges have a more sustained high-mountain

mass and are better resolved at coarser resolutions.

Additionally, precipitation systems over the Pacific

ranges are more spatially coherent (Serreze et al. 2001),

which may also enhance predictability.

Deterministic validation of the NCAR ENS, SREF

NMMB, and SREF ARW EM and PMM show im-

provement in the EM and PMM over each ensemble’s

control member. While past studies focused on areas of

flat terrain found the EM to poorly predict precipitation

because it dampens high-amplitude features (e.g., Ebert

2001; Schwartz et al. 2014), our findings suggest that this

is not true over complex terrain. This is likely because

high-amplitude precipitation features in this study are

primarily forced by terrain, which is represented simi-

larly by all ensemble members. We find a lack of im-

provement in the PMM over the EM, which conflicts

with the findings of several studies (e.g., Clark et al.

2009; Schwartz et al. 2014) and may be because the

amplitude of the orographic precipitation is captured

relatively well by the EM, as discussed above.

Although the NCAR ENS and SREF are both

designed to produce short-range probabilistic forecasts,

their configurations, characteristics, and biases are

drastically different. While the NCAR ENS contains a

single dynamical core and each member has identical

physics, the SREF contains two dynamical cores (SREF

ARW and SREF NMMB) with varied physics among

the members in each core. Ideally, each member of an

ensemble should be equally likely to be closest to the

‘‘truth,’’ and, thus, all members should have similar cli-

matologies. We find the precipitation climatologies for

each member of the NCAR ENS to be similar, whereas

the precipitation climatologies for the SREF bifurcate

into two distinct clusters based on the dynamical core.

Thus, while the NCARENS confirms the expectation of

equal likelihood, the design of the SREF clearly violates

this principal. Consistent with the biases of their control

members, NCAR ENS members contain a slight wet

bias for 80th percentile and larger events, SREF ARW

members contain an overall slight wet bias, and SREF

NMMB members exhibit a significant dry bias, espe-

cially for 85th percentile events and smaller.

Bias-corrected probabilistic validation metrics reveal

the NCARENS is less skillful than the 26-member SREF

over the Pacific ranges for both 85th and 95th percentile

event thresholds and over the interior ranges for 85th

percentile event thresholds. Meanwhile, the NCAR ENS

exhibits more skill over the interior ranges for 95th per-

centile event thresholds compared to the 26-member

TABLE 3. Probabilistic metrics for 85th percentile events.

BS Reliability Resolution Uncertainty BSS

Pacific ranges NCAR ENS 0.101 05 0.008 81 0.051 30 0.143 54 0.296 01

SREF 0.094 66 0.005 26 0.054 15 0.143 54 0.340 57

SREF ARW 0.112 01 0.012 45 0.043 98 0.143 54 0.219 66

SREF NMMB 0.091 15 0.004 95 0.057 34 0.143 54 0.364 99

Interior ranges NCAR ENS 0.107 15 0.008 37 0.057 37 0.156 15 0.313 83

SREF 0.106 66 0.005 96 0.055 46 0.156 15 0.316 98

SREF ARW 0.123 60 0.013 52 0.046 08 0.156 15 0.208 49

SREF NMMB 0.108 95 0.009 00 0.056 20 0.156 15 0.302 26
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SREF. Although probabilistic forecasts from the NCAR

ENS are characterized by good sharpness, the NCAR

ENS is overconfident and has poor reliability, whereas

the 26-member SREF is less sharp and more reliable.

Compared to bias-corrected PQPFs from 13-member

subensembles composed of SREF members with the

same dynamical core (SREF ARW and SREF NMMB),

the NCAR ENS is more skillful than the SREF ARW

over the entire western United States and the SREF

NMMB over the interior ranges. Only by combining two

ensemble systems with drastically different climatologies

can the full 26-member SREF generate PQPFs that are

generally more skillful than the NCAR ENS, especially

over the Pacific ranges.

These findings indicate the advantages of high-

resolution deterministic models and future promise of

CPEs over the western United States. The HRRR,

NAM-3km, and NCAR ENS CTL consistently out-

perform the coarser GFS, SREF ARW CTL, and

SREF NMMB, especially over the interior ranges. As

FIG. 18. As in Fig. 17, but for 95th percentile events.
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computational resources increase, future work should

focus on the development of operational deterministic

models with horizontal grid spacings of 3km or smaller.

Although the NCARENS suffers from spread deficiency,

its configuration could serve as a framework for the future

development of short-range ensembles. With a horizontal

grid spacing of 3km, an individual member of the NCAR

ENS is shown to be more skillful than two individual

members of the 16-km SREF and, because the NCAR

ENS follows the principal of equal likelihood, its proba-

bilistic forecasts can be easily interpreted. The NCAR

ENS’s shortcoming is insufficient spread, which, although

common in CPEs (e.g., Clark et al. 2011; Duc et al. 2013;

Romine et al. 2014), nonetheless hinders the perfor-

mance of its probabilistic forecasts. Therefore, ad-

dressing spread deficiency is a likely path toward

improving the performance of high-resolution, single-

physics, single-dynamical-core EPSs.
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